Skip to content

ViteNotes謝懿Shine'AI知识库

Record end-to-end learning journeys across data science, machine learning and AI.

ViteNotes

🔖About This Documentation 关于此文档

Deeply Built VitePress Framework 深度构建的VitePress框架
This is a VitePress documentation framework built from scratch with deep optimization, specifically designed for showcasing AI learning notes. This project not only implements complete configuration logic, but also provides a robust and perfect UI rendering solution, and creates Vue components to achieve practical features such as reading progress circles similar to VuePress. 这是一个从零开始构建和深度优化的 VitePress 文档框架,专为展示 AI 学习笔记而设计。本项目不仅实现了完整的配置逻辑,还提供了健硕完美的 UI 渲染方案,并创建了 Vue 组件实现与 VuePress 相同的阅读进度圈等实用性功能

Welcome to 欢迎 fork✨️ and Use 使用
All documentation code is open source and shared. Welcome to optimize together and build a better documentation sharing and display framework! 此文档代码均开源共享,欢迎共同优化,一起打造更好的文档分享展示框架!
Star History Chart

Who is Learning AI? 谁在学AI?

🎓 College Students 在校学生
Undergraduates or graduate students majoring in computer science, mathematics, statistics, etc., who want to systematically learn AI knowledge and prepare for research or employment 计算机、数学、统计等专业的本科生或研究生,希望系统学习 AI 知识,为科研或就业做准备
👨‍💻 Career-Transitioning Engineers 转型工程师
Developers with programming background who want to transition from traditional software development to AI field and master machine learning and deep learning skills 有编程基础的开发者,想从传统软件开发转向 AI 领域,掌握机器学习和深度学习技能
📊 Data Analysts 数据分析师
Those engaged in data analysis work who want to enhance modeling capabilities and advance from descriptive analysis to predictive analysis 从事数据分析工作,希望提升建模能力,从描述性分析进阶到预测性分析
🔬 Researchers 科研人员
Researchers in various fields who need to use AI technology to solve research problems, such as image analysis, natural language processing, etc. 各领域的研究者,需要用 AI 技术解决科研问题,如图像分析、自然语言处理等
💼 Product Managers 产品经理
PMs responsible for AI products who need to understand technical principles to better communicate with technical teams and evaluate project feasibility 负责 AI 产品的 PM,需要理解技术原理,更好地与技术团队沟通和评估项目可行性
🚀 Entrepreneurs 创业者
Those who want to start a business in the AI field, need to understand technical boundaries, identify business opportunities, and create AI-driven products 想要在 AI 领域创业的人,需要了解技术边界,识别商业机会,打造 AI 驱动的产品

Four Major Gains 四大收获

🎯 Systematic Knowledge 系统知识
Master the complete knowledge system of AI, from theory to practice 掌握AI的完整知识体系,从理论到实践
💻 Practical Ability 实战能力
Improve code implementation and problem-solving abilities through real project cases 通过真实项目案例,提升代码实现和问题解决能力
📊 Data Analysis 数据分析
Learn to use tools like Pandas and NumPy for data processing and visualization 学会使用 Pandas、NumPy 等工具进行数据处理和可视化
🚀 Career Development 职业发展
Build a solid foundation for AI-related positions and enhance workplace competitiveness 为 AI 相关岗位打下坚实基础,提升职场竞争力

Changes in Learning Methods 学习方式的改变

📚 Traditional Learning Methods 传统学习方式
1. Purchase heavy paper textbooks 购买厚重的纸质教材
2. Follow a fixed chapter sequence 跟着固定的章节顺序学习
3. Can only wait for teacher's Q&A when encountering problems 遇到问题只能等老师答疑
4. Knowledge updates lag behind, lacking practical experience 知识更新滞后,缺乏实战
❌ Low efficiency, slow feedback, difficult to keep up with technological changes 效率低,反馈慢,难以跟上技术变化
🚀 Modern Learning Methods 现代学习方式
1. Online documentation with real-time updates 在线文档实时更新
2. Flexible learning based on interests and needs 根据兴趣和需求灵活学习
3. Instant search, community discussion, AI assistance 即时搜索,社区讨论,AI 辅助
4. Combined with real projects, learning by doing 结合真实项目,边学边练
✅ Efficient and flexible, rapid iteration, keeping up with cutting-edge 高效灵活,快速迭代,紧跟前沿

© 2025–Present 謝懿Shine. All Rights Reserved.